Nonparametric regression estimation with general parametric error covariance

نویسندگان

  • Carlos Martins-Filho
  • Feng Yao
چکیده

Recently Martins-Filho and Yao (J Multivar Anal 100:309–333, 2009) have proposed a two-step estimator of nonparametric regression function with parametric error covariance and demonstrate that it is more efficient than the usual LLE. In the present paper we demonstrate that MY’s estimator can be further improved. First, we extend MY’s estimator to the multivariate case, and also establish the asymptotic theorem for the slope estimators; second, we propose a more efficient two-step estimator for nonparametric regression function with general parametric error covariance, and develop the corresponding asymptotic theorems. Monte Carlo study shows the relative efficiency loss of MY’s estimator in comparison with our estimator in nonparametric regression with either AR(2) errors or heteroskedastic errors. Finally, in an empirical study we apply the proposed estimator to estimate the public capital productivity to illustrate its performance in a real data setting.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

THE COMPARISON OF TWO METHOD NONPARAMETRIC APPROACH ON SMALL AREA ESTIMATION (CASE: APPROACH WITH KERNEL METHODS AND LOCAL POLYNOMIAL REGRESSION)

Small Area estimation is a technique used to estimate parameters of subpopulations with small sample sizes.  Small area estimation is needed  in obtaining information on a small area, such as sub-district or village.  Generally, in some cases, small area estimation uses parametric modeling.  But in fact, a lot of models have no linear relationship between the small area average and the covariat...

متن کامل

Nonparametric regression: a general methodology

This paper outlines a general approach to non-parametric regression. It provides a discussion of the methdology when applied to the standard normal error univariate nonparametric problem , then outlines how it can be extended to additive models and nonparametric regressions with a variety of diierent error processes. The estimation is provided by Markov chain Monte Carlo schemes that are fast, ...

متن کامل

Estimation of Hedonic Price Functions via Additive Nonparametric Regression

We model a hedonic price function for housing as an additive nonparametric regression. Estimation is done via a back ̄tting procedure in combination with a local polynomial estimator. It avoids the pitfalls of an unrestricted nonparametric estimator, such as slow convergence rates and the curse of dimensionality. Bandwidths are chosen via a novel plug in method that minimizes the asymptotic mean...

متن کامل

Nonparametric Regression with a Parametric Spatial Autoregressive Error Structure

Spatial models have received considerable attention in the last decade. At the same time, researchers have also started to embrace the flexibility afforded from nonparametric methods. However, methods that allow for nonparametric aspects of models whose errors exhibit spatial dependence have only recently been explored. We propose a fully nonparametric estimator of the regression function allow...

متن کامل

Semiparametric estimation of covariance matrices for longitudinal data.

Estimation of longitudinal data covariance structure poses significant challenges because the data are usually collected at irregular time points. A viable semiparametric model for covariance matrices was proposed in Fan, Huang and Li (2007) that allows one to estimate the variance function nonparametrically and to estimate the correlation function parametrically via aggregating information fro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Multivariate Analysis

دوره 100  شماره 

صفحات  -

تاریخ انتشار 2009